Mutational Escape in HIV-1 CTL Epitopes Leads to Increased Binding to Inhibitory Myelomonocytic MHC Class I Receptors

نویسندگان

  • Yue Yang
  • Jinghe Huang
  • Ildiko Toth
  • Mathias Lichterfeld
  • Xu G. Yu
چکیده

Escape mutations in HIV-1 cytotoxic T cell (CTL) epitopes can abrogate recognition by the TCR of HIV-1-specific CD8+ T cells, but may also change interactions with alternative MHC class I receptors. Here, we show that mutational escape in three HLA-A11-, B8- and B7- restricted immunodominant HIV-1 CTL epitopes consistently enhances binding of the respective peptide/MHC class I complex to Immunoglobulin-like transcript 4 (ILT4), an inhibitory myelomonocytic MHC class I receptor expressed on monocytes and dendritic cells. In contrast, mutational escape in an alternative immunodominant HLA-B57-restricted CTL epitope did not affect ILT4-mediated recognition by myelomonocytic cells. This suggests that in addition to abrogating recognition by HIV-1-specific CD8 T cells, mutational escape in some, but not all CTL epitopes may mediate important immunoregulatory effects by increasing binding properties to ILT4, and augmenting ILT4-mediated inhibitory effects of professional antigen-presenting cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A viral CTL escape mutation leading to immunoglobulin-like transcript 4–mediated functional inhibition of myelomonocytic cells

Viral mutational escape can reduce or abrogate recognition by the T cell receptor (TCR) of virus-specific CD8+ T cells. However, very little is known about the impact of cytotoxic T lymphocyte (CTL) epitope mutations on interactions between peptide-major histocompatibility complex (MHC) class I complexes and MHC class I receptors expressed on other cell types. Here, we analyzed a variant of the...

متن کامل

Broadly increased sensitivity to cytotoxic T lymphocytes resulting from Nef epitope escape mutations.

Nef is an HIV-1 protein that is absent in most retroviruses, yet its reading frame is highly maintained despite frequent targeting by CD8(+) CTL in vivo. Because Nef is not necessarily required for viral replication, this consistent maintenance suggests that Nef plays an important role(s) and substantial fitness constraints prevent its loss in vivo. The ability of Nef to down-regulate cell surf...

متن کامل

Effects of Mutations on Replicative Fitness and Major Histocompatibility Complex Class I Binding Affinity Are Among the Determinants Underlying Cytotoxic-T-Lymphocyte Escape of HIV-1 Gag Epitopes

Certain "protective" major histocompatibility complex class I (MHC-I) alleles, such as B*57 and B*27, are associated with long-term control of HIV-1 in vivo mediated by the CD8+ cytotoxic-T-lymphocyte (CTL) response. However, the mechanism of such superior protection is not fully understood. Here we combined high-throughput fitness profiling of mutations in HIV-1 Gag, in silico prediction of MH...

متن کامل

HIV-1 epitopes presented by MHC class I types associated with superior immune containment of viremia have highly constrained fitness landscapes

Certain Major Histocompatibility-I (MHC-I) types are associated with superior immune containment of HIV-1 infection by CD8+ cytotoxic T lymphocytes (CTLs), but the mechanisms mediating this containment are difficult to elucidate in vivo. Here we provide controlled assessments of fitness landscapes and CTL-imposed constraints for immunodominant epitopes presented by two protective (B*57 and B*27...

متن کامل

The Specificity and Polymorphism of the MHC Class I Prevents the Global Adaptation of HIV-1 to the Monomorphic Proteasome and TAP

The large diversity in MHC class I molecules in a population lowers the chance that a virus infects a host to which it is pre-adapted to escape the MHC binding of CTL epitopes. However, viruses can also lose CTL epitopes by escaping the monomorphic antigen processing components of the pathway (proteasome and TAP) that create the epitope precursors. If viruses were to accumulate escape mutations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010